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Abstract—Block-matching motion estimation is an efficient
algorithm for reducing the temporal redundancy in video coding
and is adopted by video coding standards. Many fast block-
matching algorithms have been devised to reduce the computa-
tional complexity without degrading the estimation quality. Seven
algorithms are implemented and compared – using quality of
prediction and efficiency: the full-search, the three-step search,
the four-step search, the diamond search, the hexagonal block
search, the multi-directional gradient descent search and the fast
directional gradient descent search. The aforementioned algo-
rithms are chosen not only because of their popularity, but also
because they are rather generic and they represent different ways
of cutting down the computation. The most efficient algorithms
are the hexagonal block search, the multi-directional gradient
descent search and the fast directional gradient descent search.
The hexagonal block search produces low quality of prediction,
while the two others have the best quality prediction among all
analysed algorithms. Also, the hexagonal block search has shown
to be less affected by the variation in the block size.

Index Terms—Block-matching, motion vector estimation, video
coding, video sequences.

I. INTRODUCTION

The block-matching algorithm (BMA) is a standard tech-
nique for encoding motion in video sequences [1]. It is widely
used in applications such as: video compression – for which
it was thought initially –, stereo vision and object tracking.
Typically, the current frame is divided into non-overlapping
blocks and for each of block, the algorithm searches for
the best matched block using a search window. The relative
position between the reference block and its best matched
block is represented as the motion vector [2].

Block-matching is perhaps the most reliable and robust
technique for motion estimation in video coding. Different
measures have been proposed to determine the match between
two blocks. The two most popular are: the Mean Square Error
(MSE) and the Sum of Absolute Differences (SAD). Let MxN
be the size of two images X and Y , where X is the reference
image and Y is the distorted image, the MSE and the SAD
are calculated as follows:

MSE(X,Y ) =
1

MN

M−1∑
i=0

N−1∑
j=0

|X(i, j)− Y (i, j)|2 (1)

SAD(X,Y ) =

M−1∑
i=0

N−1∑
j=0

|X(i, j)− Y (i, j)| (2)

The MSE is more accurate than the SAD, in terms of
quality [3]. However, the latter is more used because it involves
less computational cost and also the SAD is closed to the
MSE, in term of results. Moreover, block-matching algorithm
is computational expensive. Different approaches have been
proposed in order to improve block-matching motion estima-
tion accuracy and efficiency. The more expensive operation is
the computation of distortion – the match – for a couple of
blocks. Thus, the speed of a BMA is a function of the number
of explored blocks.

Motion vectors can be used to predict changes in the scene
between two or more frames of a video. Thus, the data size
is reduced to an encoding only the current frame of a video
sequence and its motion vectors, from which can be retrieved
several future frames [4]. Motion estimation algorithms focus
on maximising the quality of the prediction while maintaining
high speed in processing. In this context, motion estimation
can be seen as a search problem [5].

In this paper, the performance of various block-matching
algorithms, using quality of prediction and efficiency, is eval-
uated. Although new BMAs have been introduced, we have not
found an extensive comparison among different methods. In
[6]–[8] present comparisons based on the Peak Signal-to-Noise
Ratio (PSNR) and the number of explored blocks (EXB). A
similar comparison is presented in [9], along with measuring
the complexity as the ratio of the time that takes the Full-
Search (FS) to the time that takes the evaluated algorithm. In
[10] the authors refer largely to hardware. They used the three
criteria to compare various block-matching algorithms: silicon
area, input/output requirement, and image quality.

The comparison is based on the following criteria: the
PSNR, the EXB and the Structural Similarity Index (SSIM).
Obtained results showed the Multi-Directional Gradient De-
scent Search (MDGDS) and the Fast Directional Gradient
Descent Search (FDGDS) as the algorithms with the best
quality prediction among all analysed algorithms. Also, the
FDGDS has a balanced between high quality of prediction
and low response time. The HEXBS has shown to be less
sensitive to variations in the block size, than the other analysed
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algorithms.
The rest of the paper is organised in the following sections.

Section II presents the algorithms under comparison. Section
III contains the comparison criteria, including parameters
and characteristics used in the implementation. Section IV is
focused on the obtained results and Section V includes final
comments as conclusions.

II. SELECTED ALGORITHMS

Seven block-matching algorithms are selected. They cover
different search strategies, for motion estimation in a video
sequence. The selected algorithms are described as follows.

A. Full-Search (FS)

The Full-Search algorithm evaluates all positions in the
window search of (2W + 1)x(2W + 1)1 size. The smallest
distortion calculated between the reference block and each
block in the window search is used to determine the best
matching.

The FS is by nature a brute force algorithm and involves a
high computational cost. However, it is simple and guarantees
a high accuracy in finding the best match [11].

B. Three-Step Search (TSS)

The TSS algorithm starts with evaluating the distortion in
the central block and eight blocks around it, at an initial
distance in pixels. The best candidate is taken as a new search
center and eight block neighbours are selected around it, at
half of the initial distance. This process is repeated until the
distance is equal to one [12].

C. Four-Step Search (4SS)

The 4SS starts with evaluating the distortion in the central
block and eight blocks around it, at an initial distance of
two pixels. The best matched is calculated and eight new
neighbours are selected around the best matched block – also
at a distance of two pixels. Finally, the previous best matched
block is used to explore the eight blocks around it at a distance
of one pixel, and return the best of them [13].

D. Diamond Search (DS)

The DS follows the same strategy of the 4SS, but the
selection of the eight neighbours is done in a diamond shape.
Thus, in the final step, it only evaluates four blocks instead of
eight [14].

E. Hexagonal Block Search (HEXBS)

The HEXBS is similar to the 4SS, but varies in the search
pattern: starts with evaluating the distortion in the central
block and six blocks around it (in hexagon shaped) at an
initial distance of two pixels. In the last stage, it evaluates
four neighbours using cross shaped pattern at a distance of a
pixel. This algorithm has as an advantage that moving in either
direction only explore three new blocks. Also, the HEXBS is
faster than the DS, but has a lower quality of prediction in
most cases [6].

1Let W be the block size.

F. Multi-Directional Gradient Descent Search (MDGDS)

The MDGDS algorithm starts with evaluating the distortion
in the central block and independently in each of the eight
surrounding directions: upper, lower, left, right, upper-left,
upper-right, lower-left and lower-right directions. It makes a
straight path, pixel by pixel in each of these directions if
in each step the distortion is reduced, otherwise, the search
stops in that direction. The algorithm stops when there is
not reduction in the distortion in any of the eight directions
mentioned above [7].

G. Fast Directional Gradient Descent Search (FDGDS)

The FDGDS is an improvement of the MDGDS that in-
creases the speed of the algorithm and leads to little loss in
quality of prediction.

The improvement is by detecting when – in a direction – a
minimum is clearly better than the current search center. Thus,
the algorithm stops to evaluate the remaining directions and
starts a new stage in the minimum search found.

Po et al., 2009 [8] proposes the measure Relative Ratio Dis-
tortion (RDR) as a criterion to determine whether a particular
block is better than the reference block. When the path ends
in one direction, the RDR is compared with a threshold and
– if it is lower –, leaps and explores other directions.

III. COMPARISON CRITERIA

Since an algorithm A requires time proportional to the
number of explored blocks (EXB), the efficiency of a BMA is
determined by the EXB. The quality of prediction of a BMA
is calculated using the Peak Signal-to-Noise (PSNR) and the
Structural Similarity Index (SSIM).

The SAD is used as the Block Distortion Measure (BDM),
which takes W 2 operations. The BDM is computed for each
block on the analysed frame. In this way, the complexity of a
BMA turns proportional to the number of explored blocks.

In the case of the PSNR, the signal will be the original frame
and the noise will be the obtained reconstruction using the
motion vectors. Let MAXI be the maximum intensity, using
8-bits is 255, the PSNR is calculated as:

PSNR = 20 log10

(
MAXI√
MSE

)
(3)

Let x and y be two windows of common size NxN , the
SSIM is calculated as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4)

where the mean intensity represents the luminance; the stan-
dard deviation represents the contrast; and C1 and C2 are
included to avoid instability when µ2

x + µ2
y and σ2

x + σ2
y are

very close to zero, respectively. The mean SSIM (MSSIM) is
used to evaluate the overall image quality:

MSSIM(X,Y ) =
1

M

M∑
i=1

SSIM(xi, yi) (5)



where X and Y are the reference and the distorted images,
respectively; xi and yi are the image contents at the ith local
window; and M is the number of local windows of the image
[15].

The PSNR do not model the HVS (Human Visual System),
the location of the errors is not taken into consideration, nor
the sign of the error. In this way, the SSIM provides greater
accuracy and consistency than the PSNR, which simply and
objectively quantifies the error signal [16].

The experimental comparison was performed using the
repository of freely redistributable test sequences, owned by
Xiph.Org Foundation2. Table I shows the characteristics of the
used sequences (see Fig. 1) in the study3.

Three different block sizes are used in all algorithms:
8x8, 16x16 and 32x32. In this way, the FS algorithm was
implemented with search windows of 17x17, 33x33 and 65x65
respectively.

TABLE I
CHARACTERISTICS OF THE TEST SEQUENCES

Video Sequence Size Number of Frames Motion
Akiyo 352x288 300 Small

Coastguard 352x288 300 Large
Football 352x288 260 Large
Foreman 352x288 300 Medium
Garden 352x240 115 Medium
Mobile 352x288 300 Medium

Mother daughter 352x288 300 Small
Silent 352x288 300 Small
Stefan 352x240 300 Large

The implementation was done using C++ programming
language. Technical features of the PC – on which the tests
were carried out – are: memory 3.4 GB; and four processor
Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40 GHz.

IV. RESULTS

Tables II, III, and IV show obtained results of the com-
parison based on the reconstructing frames of selected video
sequences, using differents block sizes and the full video
sequences.

The HEXBS, the DS and the TSS are the algorithms with
the lowest prediction quality.

When going through the results, some algorithms clearly
stand out. The most efficient algorithms are the HEXBS, the
MDGDS and the FDGDS, independent of the motion of the
video sequence. The HEXBS produces low quality of pre-
diction, while the two others have the best quality prediction
among all analysed algorithms. Figs. 2, 3, and 4 show the
SSIM performance of these algorithms in video sequences
with small-, medium- and large-motion, respectively, using the
first 50 frames and a block size of 16x16 pixels. In the three
cases, the results generated by the FDGDS are ver close to
those generated by the MDGDS. On the other hand, the low

2All video sequences used are in uncompressed format: YUV4MPEG, and
are available at: http://media.xiph.org/video/derf/.

3The classification of the video sequences is taken from [5].

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. Test sequences used in the study: (a) Akiyo, (b) Coastguard, (c)
Football, (d) Foreman, (e) Garden, (f) Mobile, (g) Mother daughter, (h) Silent,
and (i) Stefan.

Fig. 2. SSIM performance of the HEXBS, the MDGDS, and the FDGDS
on the first 50 frames of the Akiyo video sequence.

quality of prediction of the HEXBS is observed in the results
of SSIM using Foreman and Stefan with medium- and large-
motion.

As the block size grows, the prediction quality tends to
be lower (see Fig. 5). Increasing a block size covers larger
areas of the frame, intensity values in the block will have
larger variability. Using large block sizes decreases the quality
of prediction obtained in video sequences with medium- and
large-motion. However, in video sequences with small-motion,
the use of large block sizes has low negative impact on the
quality of prediction.

Some algorithms are more sensitive to the variation in



TABLE II
COMPARISON OF SELECTED ALGORITHMS USING BLOCK SIZE OF 8X8 PIXELS

Sequence Measure FS TSS 4SS DS HEXBS MDGDS FDGDS

Akiyo
PSNR 43.615 43.116 43.290 42.893 42.991 43.583 43.566
SSIM 0.996 0.993 0.993 0.992 0.992 0.993 0.993
EXB 275.424 24.101 16.467 12.639 10.654 8.946 8.888

Coastguard
PSNR 31.616 30.359 31.362 28.922 31.103 31.358 31.336
SSIM 0.926 0.905 0.922 0.865 0.916 0.923 0.923
EXB 275.424 24.186 19.310 15.086 10.672 15.157 13.007

Football
PSNR 26.654 25.218 25.582 25.770 22.043 25.898 25.749
SSIM 0.782 0.761 0.770 0.775 0.661 0.782 0.775
EXB 275.424 24.225 24.802 19.453 10.677 27.345 23.671

Foreman
PSNR 32.961 31.512 32.043 31.375 30.062 32.518 32.344
SSIM 0.936 0.894 0.906 0.891 0.864 0.913 0.910
EXB 275.424 24.168 20.852 16.119 10.665 19.085 16.593

Garden
PSNR 25.233 22.092 24.143 20.792 23.312 24.690 24.615
SSIM 0.922 0.833 0.886 0.791 0.860 0.913 0.910
EXB 273.945 24.105 19.818 15.716 10.646 16.558 12.945

Mobile
PSNR 25.584 24.318 24.709 24.098 24.639 25.416 25.392
SSIM 0.920 0.890 0.904 0.885 0.904 0.920 0.920
EXB 275.424 24.129 17.458 13.493 10.660 12.231 11.986

Mother daughter
PSNR 41.341 40.761 41.018 40.551 40.442 41.153 41.120
SSIM 0.975 0.971 0.972 0.970 0.969 0.973 0.973
EXB 275.424 24.158 17.900 13.988 10.667 18.527 18.259

Silent
PSNR 37.657 36.816 37.068 36.844 34.974 37.274 37.179
SSIM 0.969 0.964 0.966 0.964 0.958 0.967 0.967
EXB 275.424 24.101 17.472 13.431 10.655 11.319 10.729

Stefan
PSNR 24.734 23.441 23.149 23.263 21.667 23.059 23.034
SSIM 0.875 0.795 0.794 0.798 0.723 0.795 0.793
EXB 273.945 24.065 20.640 16.462 10.634 17.390 15.882

TABLE III
COMPARISON OF SELECTED ALGORITHMS USING BLOCK SIZE OF 16X16 PIXELS

Sequence Measure FS TSS 4SS DS HEXBS MDGDS FDGDS

Akiyo
PSNR 42.944 42.821 42.858 42.541 42.586 42.940 42.939
SSIM 0.993 0.992 0.992 0.992 0.992 0.993 0.993
EXB 984.919 23.212 15.845 12.219 10.313 8.563 8.518

Coastguard
PSNR 30.477 30.265 30.347 28.670 30.341 30.371 30.369
SSIM 0.914 0.908 0.911 0.866 0.904 0.911 0.911
EXB 984.919 23.375 18.593 14.238 10.350 14.125 12.218

Football
PSNR 25.673 23.606 24.289 24.397 21.151 24.515 24.456
SSIM 0.796 0.704 0.731 0.734 0.609 0.742 0.738
EXB 984.919 23.460 25.736 20.087 10.357 28.560 25.769

Foreman
PSNR 32.119 30.717 31.345 30.594 29.305 31.392 31.305
SSIM 0.923 0.886 0.899 0.885 0.849 0.905 0.902
EXB 984.919 23.330 20.666 15.848 10.336 19.271 16.941

Garden
PSNR 23.794 22.980 23.326 21.276 22.653 23.579 23.547
SSIM 0.903 0.862 0.877 0.812 0.849 0.894 0.892
EXB 973.703 23.203 18.816 14.550 10.294 15.249 12.180

Mobile
PSNR 24.588 24.267 24.365 24.061 24.243 24.521 24.519
SSIM 0.905 0.898 0.901 0.892 0.899 0.905 0.905
EXB 984.919 23.228 16.296 12.479 10.318 11.231 11.065

Mother daughter
PSNR 40.473 40.232 40.328 40.007 39.854 40.373 40.365
SSIM 0.970 0.968 0.9689 0.970 0.966 0.969 0.969
EXB 984.919 23.291 16.904 13.174 10.332 10.994 10.826

Silent
PSNR 35.973 35.241 35.437 35.308 33.942 35.421 35.395
SSIM 0.961 0.958 0.959 0.957 0.953 0.960 0.960
EXB 984.919 23.217 16.732 12.880 10.314 10.499 10.119

Stefan
PSNR 24.104 22.477 22.349 22.431 20.868 22.216 22.212
SSIM 0.850 0.765 0.773 0.778 0.688 0.769 0.769
EXB 973.703 23.152 20.464 16.434 10.275 16.671 15.438



TABLE IV
COMPARISON OF SELECTED ALGORITHMS USING BLOCK SIZE OF 32X32 PIXELS

Sequence Measure FS TSS 4SS DS HEXBS MDGDS FDGDS

Akiyo
PSNR 42.177 42.177 42.177 42.099 42.097 42.177 42.177
SSIM 0.992 0.992 0.992 0.991 0.991 0.992 0.992
EXB 3425.970 21.485 14.682 11.430 9.646 7.943 7.916

Coastguard
PSNR 29.290 29.221 29.226 28.021 29.070 29.261 29.261
SSIM 0.894 0.891 0.892 0.852 0.884 0.891 0.891
EXB 3425.970 21.7999 17.257 13.106 9.723 12.837 11.206

Football
PSNR 23.683 22.044 22.724 22.793 20.478 22.793 22.781
SSIM 0.7343 0.647 0.688 0.688 0.567 0.693 0.692
EXB 3425.97 21.958 25.257 19.681 9.731 27.176 25.282

Foreman
PSNR 30.239 29.460 29.799 29.474 28.436 29.915 29.881
SSIM 0.903 0.868 0.885 0.873 0.833 0.890 0.888
EXB 3425.970 21.684 19.477 14.919 9.693 18.059 16.188

Garden
PSNR 16.853 16.798 16.818 16.379 16.693 16.833 16.832
SSIM 0.811 0.795 0.802 0.752 0.778 0.808 0.807
EXB 3231.180 21.145 16.937 12.840 9.352 13.094 10.655

Mobile
PSNR 23.593 23.579 23.585 23.513 23.532 23.590 23.590
SSIM 0.884 0.883 0.884 0.881 0.882 0.884 0.884
EXB 3425.970 21.495 14.921 11.450 9.651 10.086 9.968

Mother daughter
PSNR 39.373 39.299 39.316 39.147 39.070 39.323 39.323
SSIM 0.964 0.964 0.964 0.963 0.962 0.964 0.964
EXB 3425.970 21.538 15.206 11.831 9.663 9.250 9.154

Silent
PSNR 33.781 33.431 33.502 33.453 32.811 33.423 33.423
SSIM 0.950 0.949 0.950 0.949 0.946 0.951 0.951
EXB 3425.970 21.495 15.389 11.948 9.648 9.286 9.148

Stefan
PSNR 15.505 14.947 15.020 15.073 14.557 14.987 14.987
SSIM 0.787 0.676 0.694 0.702 0.602 0.687 0.6867
EXB 3231.180 21.043 18.948 15.437 9.313 14.891 13.997

Fig. 3. SSIM performance of the HEXBS, the MDGDS, and the FDGDS
on the first 50 frames of the Foreman video sequence.

block size than others. For all algorithms, the best quality
of prediction was obtained using block size of 8x8 pixels. In
Garden and Stefan video sequences the use of 32x32 pixels
block shows that, regardless of the BMA used, results are
quite distant from those obtained with block sizes of 8x8
and 16x16 pixels. The HEXBS is less affected by variation
in block size. The quality of prediction obtained using block
sizes of 16x16 and 32x32 pixels are very close to those
obtained with block size of 8x8 pixels. In the other algorithms,

Fig. 4. SSIM performance of the HEXBS, the MDGDS, and the FDGDS
on the first 50 frames of the Stefan video sequence.

the results obtained using 32x32 pixels block are close to
those obtained using 8x8 pixels block in video sequences:
Akiyo, Mobile and Mother daughter. The TSS, the 4SS and
the DS, the results obtained with block size of 16x16 pixels
are close to those obtained with block size of 8x8 pixels in
the video sequences: Akiyo, Coastguard, Foreman, Garden,
Mobile, Mother daughter, and Stefan. This is also true for
the FDGDG and the MDGDS using video sequences: Akiyo,
Coastguard, Mother daughter, and Stefan.



Fig. 5. PSNR performance of the MDGDS algorithm on the first 50 frames
of the Foreman video sequence.

The Zero Motion Vector (ZMV) is the case when there is
not movement between two consecutive frames of a video
sequence. The number of explored blocks for the TSS are
25, for the 4SS 17, for the DS are 13, for the HEXBS 11, and
for the MDGDS and the FDGDS are 9. The lasts algorithms
only analyse the central block and eight blocks around.

V. CONCLUSIONS

In this paper, the performance of seven block-matching al-
gorithms is assessed using video sequences with three different
types of motion. This information may be used to determine
which specific algorithm performs better depending on the
motion of a sequence.

Among evaluated algorithms, the HEXBS is efficient but
producd low quality of prediction, the MDGSD and the
FDGDS are efficient and produce the best quality predic-
tion. Moreover, the FDGDS generates close results to the
MDGDS in terms of quality, but it explores less blocks than
the MDGSD. This makes the FDGDS a balanced algorithm
between high quality of prediction and low computation cost.

The HEXBS is less affected by the variation in the block
size. While the other analysed algorithms show great loss of

prediction by increasing the block size used.
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